Package: spStack 1.0.1
spStack: Bayesian Geostatistics Using Predictive Stacking
Fits Bayesian hierarchical spatial process models for point-referenced Gaussian, Poisson, binomial, and binary data using stacking of predictive densities. It involves sampling from analytically available posterior distributions conditional upon some candidate values of the spatial process parameters and, subsequently assimilate inference from these individual posterior distributions using Bayesian predictive stacking. Our algorithm is highly parallelizable and hence, much faster than traditional Markov chain Monte Carlo algorithms while delivering competitive predictive performance. See Zhang, Tang, and Banerjee (2024) <doi:10.48550/arXiv.2304.12414>, and, Pan, Zhang, Bradley, and Banerjee (2024) <doi:10.48550/arXiv.2406.04655> for details.
Authors:
spStack_1.0.1.tar.gz
spStack_1.0.1.zip(r-4.5)spStack_1.0.1.zip(r-4.4)spStack_1.0.1.zip(r-4.3)
spStack_1.0.1.tgz(r-4.4-x86_64)spStack_1.0.1.tgz(r-4.4-arm64)spStack_1.0.1.tgz(r-4.3-x86_64)spStack_1.0.1.tgz(r-4.3-arm64)
spStack_1.0.1.tar.gz(r-4.5-noble)spStack_1.0.1.tar.gz(r-4.4-noble)
spStack_1.0.1.tgz(r-4.4-emscripten)spStack_1.0.1.tgz(r-4.3-emscripten)
spStack.pdf |spStack.html✨
spStack/json (API)
NEWS
# Install 'spStack' in R: |
install.packages('spStack', repos = c('https://span-18.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/span-18/spstack-dev/issues
- simBinary - Synthetic point-referenced binary data
- simBinom - Synthetic point-referenced binomial count data
- simGaussian - Synthetic point-referenced Gaussian data
- simPoisson - Synthetic point-referenced Poisson count data
Last updated 11 days agofrom:8a74864558. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 02 2024 |
R-4.5-win-x86_64 | OK | Nov 02 2024 |
R-4.5-linux-x86_64 | OK | Nov 02 2024 |
R-4.4-win-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-aarch64 | OK | Nov 02 2024 |
R-4.3-win-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-aarch64 | OK | Nov 02 2024 |
Exports:cholUpdateDelcholUpdateDelBlockcholUpdateRankOneget_stacking_weightsiDistsim_spDataspGLMexactspGLMstackspLMexactspLMstackstackedSamplersurfaceplotsurfaceplot2
Dependencies:BHbitbit64clarabelclicodetoolscolorspaceCVXRdigestECOSolveRfansifarverfuturefuture.applyggplot2globalsgluegmpgtableisobandlabelinglatticelifecyclelistenvmagrittrMASSMatrixMBAmgcvmunsellnlmeosqpparallellypillarpkgconfigR6RColorBrewerRcppRcppEigenrlangRmpfrrstudioapiscalesscstibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
spStack: Bayesian Geostatistics Using Predictive Stacking | spStack-package spStack |
Different Cholesky factor updates | cholUpdate cholUpdateDel cholUpdateDelBlock cholUpdateRankOne |
Optimal stacking weights | get_stacking_weights |
Calculate distance matrix | iDist |
Simulate spatial data on unit square | sim_spData |
Synthetic point-referenced binary data | simBinary |
Synthetic point-referenced binomial count data | simBinom |
Synthetic point-referenced Gaussian data | simGaussian |
Synthetic point-referenced Poisson count data | simPoisson |
Univariate Bayesian spatial generalized linear model | spGLMexact |
Bayesian spatial generalized linear model using predictive stacking | spGLMstack |
Univariate Bayesian spatial linear model | spLMexact |
Bayesian spatial linear model using predictive stacking | spLMstack |
Sample from the stacked posterior distribution | stackedSampler |
Make a surface plot | surfaceplot |
Make two side-by-side surface plots | surfaceplot2 |