Package: spStack 1.0.1

spStack: Bayesian Geostatistics Using Predictive Stacking

Fits Bayesian hierarchical spatial process models for point-referenced Gaussian, Poisson, binomial, and binary data using stacking of predictive densities. It involves sampling from analytically available posterior distributions conditional upon some candidate values of the spatial process parameters and, subsequently assimilate inference from these individual posterior distributions using Bayesian predictive stacking. Our algorithm is highly parallelizable and hence, much faster than traditional Markov chain Monte Carlo algorithms while delivering competitive predictive performance. See Zhang, Tang, and Banerjee (2024) <doi:10.48550/arXiv.2304.12414>, and, Pan, Zhang, Bradley, and Banerjee (2024) <doi:10.48550/arXiv.2406.04655> for details.

Authors:Soumyakanti Pan [aut, cre], Sudipto Banerjee [aut]

spStack_1.0.1.tar.gz
spStack_1.0.1.zip(r-4.5)spStack_1.0.1.zip(r-4.4)spStack_1.0.1.zip(r-4.3)
spStack_1.0.1.tgz(r-4.4-x86_64)spStack_1.0.1.tgz(r-4.4-arm64)spStack_1.0.1.tgz(r-4.3-x86_64)spStack_1.0.1.tgz(r-4.3-arm64)
spStack_1.0.1.tar.gz(r-4.5-noble)spStack_1.0.1.tar.gz(r-4.4-noble)
spStack_1.0.1.tgz(r-4.4-emscripten)spStack_1.0.1.tgz(r-4.3-emscripten)
spStack.pdf |spStack.html
spStack/json (API)
NEWS

# Install 'spStack' in R:
install.packages('spStack', repos = c('https://span-18.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/span-18/spstack-dev/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • simBinary - Synthetic point-referenced binary data
  • simBinom - Synthetic point-referenced binomial count data
  • simGaussian - Synthetic point-referenced Gaussian data
  • simPoisson - Synthetic point-referenced Poisson count data

On CRAN:

4.88 score 6 scripts 300 downloads 13 exports 49 dependencies

Last updated 11 days agofrom:8a74864558. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-win-x86_64OKNov 02 2024
R-4.5-linux-x86_64OKNov 02 2024
R-4.4-win-x86_64OKNov 02 2024
R-4.4-mac-x86_64OKNov 02 2024
R-4.4-mac-aarch64OKNov 02 2024
R-4.3-win-x86_64OKNov 02 2024
R-4.3-mac-x86_64OKNov 02 2024
R-4.3-mac-aarch64OKNov 02 2024

Exports:cholUpdateDelcholUpdateDelBlockcholUpdateRankOneget_stacking_weightsiDistsim_spDataspGLMexactspGLMstackspLMexactspLMstackstackedSamplersurfaceplotsurfaceplot2

Dependencies:BHbitbit64clarabelclicodetoolscolorspaceCVXRdigestECOSolveRfansifarverfuturefuture.applyggplot2globalsgluegmpgtableisobandlabelinglatticelifecyclelistenvmagrittrMASSMatrixMBAmgcvmunsellnlmeosqpparallellypillarpkgconfigR6RColorBrewerRcppRcppEigenrlangRmpfrrstudioapiscalesscstibbleutf8vctrsviridisLitewithr

spStack: Bayesian Geostatistics Using Predictive Stacking

Rendered fromspStack.Rmdusingknitr::rmarkdownon Nov 02 2024.

Last update: 2024-10-31
Started: 2024-09-29